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MIXED PROBLEMS FOR A STRIP PARTIALLY COUPLED TO A RIGID BASE* 

S.I. GRITSENKO and V.B. ZELENTSOV 

Dynamic and static problems axe considered for an elastic strip partially coupled 
along its lower face to a nondeformable base; shearing displacements are specified 
along its upper face. Mixed boundary-value problems are then reduced, by means of 
an integral Fourier transformation, to an integral equation of the first kind for 
the tangential contact stresses along the coupling segment. The solution of the in- 
tegral equation is reduced to the solution of an infinite system of linear algebraic 
and of special type equations. Certain results from a numerical solution of these 
problems are presented. 

1. Let us consider a mixed static problem for an elastic strip h units high, adhering 
along its lower face to an absolutely rigid base along the segement Q and lying without any 
friction outside Q. Shearing displacements are specified along the upper face of the strip, 
and there are no normal stresses present. The boundary conditions of this problem have the 
form (problem A) 

Lt (I, h) = C', (z), up fz, h) = 0, v (2, 0) = 0, j z 1 < ca 
11 (2, 0) = 0, 5 5 m; Try (z, 0) = 0, I E H 

In addition to problem A, we consider an analogous dynamic problem for an elastic strip 
in the case of steady-state oscillation conditions (problem B). The boundary conditions for 
this problem have the form 

u (2, h, t) = U, 1;~) e-*et, uy fr, h, t) = 0, v (5, 0, t) = 0 

tri< co 
u (x, 0, t) = 0, 2 E 0; 7xy (2, 0, t) = 0, x E fi 

Below we will consider the following variants of the segment fl: 

f-e; +a] (problems Al, Bl) 

-al u Ii-a; j-b] (problems A2, 821 
jz":; -al IJ [-t a; f a) (problems A3, 83) 

These mixed boundary-value problems may be reduced, by means of an integral Fouriertrans- 

formation, to an integral equation of the form 

~~~(x-~)~(~)~~=A f kz(x-~)~o(~)~, X&Q (1.1) 

n -c+ 

k,(t)= S Kj(U)el" dtt, K~(u)=$$, j_ -1,2 
1' 

(1.2) 

M,(u) =: 2u -t (3 - 4v)sh 2u, M2 (u) = 2 (1 - v)uch u - 
z&h u 

N(u) = a ch* U, A - 4@-i (problem A) 
M,(u) = o,o,sh 5% eh sr = u%ho,ch cr, 
M*(u) = a1 I(9 - '/$@j ch 5% - u2ch 0~1 

N (u) = o,ch o,ch u*, Oj=~~~ j=i* 2 
x1$ = po%V@ + 2~), xpz = p&?/~, A = 2$l (problem B) 
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Here T(E) are the tangential stresses along the segment $2 for problem A or their ampli- 
tude values for problem B; p,v, b, and p respectively are the density, Poisson coefficient, 
and Lam6 coefficients of the material of the strip, and o is the angular frequency. 

The functions K,(u) are real on the real axes and meromorphic in the complex plane. More- 
over, 

K,(u) - 1 u 1-l + 0 (d~i), u + C-Q (problem A) (1.3) 

K,(u) - 1 u 1-l i- 0 (I u le3), u--+ OQ (problem B) 
K, (u) N e+I + 0 (e-sI”I), u + CO (problems A, B) 

In view of (1.3), we have for K,(u) 

K, (u) = KI (0) fi (u” - 5,‘) (u2 - %‘)-I 
?a=1 

(1.4) 

where j, and z,, are the zeroes andpolesof the function K,(u) in the complex plane u = a + ib, 
which grow in modulus with increasing number, thereby ensuring the convergence of the infinite 
product (1.4). 

The poles of problem A are of two-stagesand in the complex plane, i.e., G,,,+ = zem. In 
the case of the dynamic problem B, a finite number of zeroes and poles may lie on the real 
axis, depending upon the frequency CO. The integration path r' from problem B is selected in 
accordance with the radiation conditions as in /l/. In problem A, the path r coincides with 
the real axis. Note that K,(u)may be readily factored (thanks to the representation (1.4)) 

K,(u)=~K,,(u)K,-(u), 4+(u)= mii (u-L,)(u-2,)-l (1.5) 

where 5, and z, are the zeroes andpolesfrcm the upper half-plane. 

2. Let us pass on to the solution of the integral equation (1.1). Supposing that U,(J) 
may be expanded in a Fourier series, we construct a solution for a special form of the right 
side of Equation (1.1) U,(Z)= ,iel. In this case, the integral equation (1.1) may be written 
in the form 

S kl (x - 5) T (5) dz = 2rcAK2 (E) eLexx, SE61 (2.1) 
n 

Because of the properties of the kernel K1(u) from (1.3) and (1.4), the solution of equa- 
tion (2.1) will be found in the form of a series in eigenfunctions of the integral operator 
/2/. For problem Al, 

T (x) = &,e’EX + j, (~&e~‘n(~+~) -/- c,,e’L(a-x)) (2.2) 

Here and below, AO, A,,, and C,, are given constants to be determined and &, are thezeroes 
of the function K,(u)lying in the upper half-plane. 

The solution of problem Bl will be found in the same form as problem Al. It must be 
borne in mind that solutions of the problems in the form (2.2) have been previously found /2/. 

To determine the unknown constants in the solution of equation (2.1), we satisfy it by 
direct substitution (2.2). Since taken account of two-stages of the poles K,(u)for problem 
Al, once the quadratures have been computed, we obtain from the theory of residues an infinite 
system of linear algebraic equations for determining the sets of unknowns A,, and C,. This 
system is transformed and, passing to the unknowns z*,, =&&C,, we rewrite it in matrix 
form: 

AX* = TBX* + D* 

x* = {.z$), A= {a,,), B = I&,,), D* = (dii3 
QWll-I,, = (%m-1- 5J1. %n,n = (Gil - LJ-’ 

bcm,-xv n = (++I - cJ1 e’leEn, b,,, = (km - c,)-* eziatn 

f c&,_~ I - A, [(z~,+~ - E)-~ e-lEa _t (z~~_~ + 4-l eirol 
d$,, = - 4, [(Q,,, - E)-’ e+’ _t (~a,,, + 8)~* elea] 
A,=?IK~(E)/K~(E); m=1,2 ,...; n--1,2 ,... 

(2.3) 
(2.4) 



In the case 
tegral equations 

a, = (z, - Q)-“, bm - fz, + tf” 8% (2.5) 
df ,,, =e - AO [(z, - e)-x e-l- _t (a, + e)-l eia] 

of problems A2 and B2, the integral equation (2.1) may be reduced to two in- 
/3/: 

! [b(s-Ef + k~(s + El1 ~+(~)~~~A~~(~)~~ (5) (2.6) 

: 

S fh@-&)-b(r + t)lT_(E)d&-2nAsh O=)&(e) 
'hz (4 = V1 IT (2) =_ T (+I 

(2.7) T+ (2) = Aa ch (fsz) + w$s,6 (A,,elfnft*k + C,e’~(f’i”‘) 

T_(a)==Aash(kz) + sign(5)n_$, ~(&,~r~~~(~(~) + ~7,&(('(~~)) 
* I 

where Aor 4, end &are unknown constants found from the integral equation (2.61. For ex- 
ample, for problem B2 is the infinite system of linear algebraic equation5 obtafnedbydirect 
substitution of (2.7) in (2.6) may be written in matrix form as follows: 
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The infinite sY5tem of linear algebraic equations for problem Bl obtained by direct sub- 
stitution of (2.2) in (2.1) has the same form as in /2/, and may be written in matrix form 
(2.3) with the following notation 

The solution Of equations (2.6) is found for problems A2 and B2 in the form 

AX*=~~xffC(X+-x-);tD(X+$X-)+F~ 
(2.8) 

X*=b,,*), A=(a,l, B=fbn,nh C==Icmnl 

D = f&d, F* = &,*h znf - A, f G 

a, = (h - I$$~, bm = lj, (s, + G)“l eiacM’ 

cm = I,!* (G + Q-l epiorm 

- Vi (G - L)-’ ew Pnt, + % (6 - 41 
;;: - (A/2) [(e, + 13)~’ eiba - (r, - e)-l e-lbel T 

(Ao/2) ((z,,, - e)-l PC f (z,,, + e)-’ emuu 3 

e”l”m [(h + e)-l eia f (h - e)-’ e+*7) 
A, = BK, (e)lK, (8); m = 1, 2, . . .; n = 1, 2, . . . 

The integral equation (2.1) for problems A3 and B3 may also be reduced to two integral 
equations analogous to (2.6) with the only difference that the limits of integration are now 
from at0 00. The solution of problems A3 and 83 must be found in the form 

T+ (s) = Aa+ ch (iez) + 5 k+eG(‘“E”’ 
(2.9) 

n-1 

T_(z)=Ae- sh(iar)+ sign@] &&*e*~~~~' 

The infinite system Of linear algebraic equations for finding the sets of unknown con- 

stants A,* has, for instance, the following form for problem B3: 

AX* = ,tBX* + D*, X* = (An*) 
12.10) 

0, = (2, - WE, b,, = (qm + LX1eH"~ 

&$=__+[~..& 
znr--8 

Ao* = AK, (e)fK, (e), m = i, 2, . . .; n = 1, 2, . . . 

3. Above it was shown that all our mixed problem5 may be reduced to the solution of 
integral equations of the first kind of the form t2.11, (2.6). In turn, the integral equa- 

tions of mixed problems reduce to the solution of infinite systems of a special typeofiinear 
algebraic equations, in each of which the column of unknown constants is multiplied by a 
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singular matrix. To solve these systems, it is necessary to regularize them, i.e., reduce 
them to an algebraic system of the second kind X =GX+ H, after which a decision is made as 

to whether they must be regularized. Regularization of this special type of infinite systems 
reduce to the inversion of the singular matrix A. Inversion of the singular matrix of the 
form (2.5), 12.8), (2.10) has been previously presented in /2/; here it was a matterofinvert- 
ing of Wiener- Hopf integral operator with corresponding kernel. A formula has also been 

given in this paper according to which it is possible to compute the elements of the matrix 
A-’ inverse to A: 

A-’ = (z,J, z,,~ = IK,’ t--u UK-1 (%)I’ (z* - &Jr (3.11 

For purposes of completeness of our study, we construct a matrix inverse to the singular 
matrix of the form (2.4). For this purpose, it is first necessary to find the solution ofthe 
Wiener- Hopf integral equation 

T cp(4k(~-_)~=2nj(z), O<Z<OO; k(t)=S &WeiU'du 
0 r 

(3.2) 

where KZ@)is given by the formulas (1.2). In view of the properties of K~((u), the right 
side is selected in the special form 

f (4 t: e”kx + ize”~ (3.3) 

The solution of the integral equation (3.2) with right side (3.3) is foundby thewiener- 
Hopf method and has the form 

(3.4) 

Here and in (3.3), 6, and z,, are the zeroes and poles ofK,(u) in the upper half-plane of 
the complex plane u = a $ ifi. On the other hand, the solution of (3.2) may be found in the 
form 

f3.5) 

and then (3.5) directly substituted in (3.2). As a result, we determine CC,, by finding the 
infinite system 

(3.6) 

But from (3.41, Z,(Zk) have the form 

%W== K 
1 

+ @k, k t- &i -h - t”k ’ t,,l” 1 
Performing sane cazputations with (3.6) and bearing in mind the final relation,weobtain 

pk 
% #k) “h @a, w* t$) ME tzk, 

=-* sk='N'o ek'= 3(~.(+))’ N8 ($J 

Since z$k-1 = Z.&t 
ed form as follows: 

the elements of the inverse matrix A'1 = (T,,~) may be written in expand- 
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Thus, once we have the formulas fax the Inverse matrices (3.1) and (3.7), al.1 CJI..X Xl- 

finite systems (2.4)) (2..5) I (2.8), and (2.10) may be regularized by multiplicatron of A-* 
on the left (the existence of a left-hand inverse matrix has been previously proved /z/). As 
a result We obtain regularized infinite systems of the second kind, and in case (x.8), asy- 
stem of two regularized infinite systems 

X*= TA-'BX*&A-'C(X+ - X-) f A-ID (X’ -+- x-)+ A-IF* 

AS WdS done in /2/, it is possible to prove that infinite regularized systems of lrnear 
algebraic equations will be quasi-completely regulasized /4/. 

4. As an example, let us consider the case 8-0, r.e., the case of constant displace- 
ments on the upper face URAL 

In order to create a numerical realization of problems A and B, it 1s frrst necessary to 
find the zeroes and poles of the kernel Kt(u) of the integral equation (2.1). The poles of 
problem A may be found analytically: z,, = i (xi% + an), and the first several zeroes with v-0.3 
and v=O.2 are as follows: 

kO.8032 -I- 2.165Oi;k 1.2509-f-5.38211; & 1,4785+8,5533i; j1.6340f 
11.71151;. . . (v = 0.3); 

*0.688Q + 2.1842f;f 1.1478 + 5.39081; k 1.3769 + 8.559Oi; * 1.5326 + 
11.715&i; _ . . (v = 0.2) 

The zeroes and poles of problem B depend both on Y and on the generalized frequency x1. 
Several values of t and zn. obtained in a computation with V = 0.3 are given below: 

&, = 2.350; 0.192; f 1.321 -i- 4.747i; -& 1.515 i_ 8.165i; & 1,657 + 11.430r; 
Z, = 2.788; 0,677; 3,45Qi; 4.391i; 7.1731; 7.6661; 10.5201: 10,862~; . . (x2 = 3.2); 

5, = 4.628; 2.088; k1.248 + 3.6163; k1.514 + 7.562~; hi.662 + 11,OOft: L,, = 
4.747; 2.162; 1.671; 3.8811; 6.0571; 7.385i; 9.7931; 10.6661: . . (x, = 5.0). 

In this example, the infinite systems for problems A and B are significantly simplified. 
After this simplification, the systems must be regularized, as shown in Sect.3, as a resultof 
which the systems become quasi-completely regular; the method of reduction may then by applied 
to solve them on the computer. The arrangement of the system that would ensure a desired pre- 
cision for the solution of the integral equation (2.1) increases with increasing value of the 
parameter h=hla: in the case of problem B, the dimension increases with increasing general- 
ized frequency +. 

To find the contact stresses with a 0.5% error, 
it was established ccauputationally that if ;1<2 and 
x,<6, in the worst case we may limit ourselves to 

an algebraic system with dimension W= 40. 
A program package in the Unified System FORTRAN 

OS ES language was compiled for numerical realization 
of problems A and B. With the ES-i022 computer, the 
maximal machine time for problem A amounted to 8 mm- 
utes, and for problem 3, 25 minutes. 

In Fig.l, the solid curves depict the distribu- 
tion of the dimensionless contact stresses T,(r),where 

Fig.1 
7',, (z)A\x,/sin x, = Re[?'(z)), depending on the generalized 
frequency in the case P: [--a;+~) with h= 0.25. Curve 
I. corresponds to the case x9= 0 (problem Al), and 

curves 2 and 3 to cases x,=4 and x,=j (problem Bl). If xp<i, the numerical values of 
the solution of problem B virtually coincrde with the solution of problem A. 

The broken lines given the distribution of the dimensionless contact StreSSeS along a 

coupling segment P of length 20, assuming this coupling segment is unique (curve f) Or if 

there exists a second coupling segement on the left of the same length and at a distance 4~ 
units from the first segment (curve 2) or at a distance a units from the first segment (case 

3) - The computations were conducted for h= 0.5 and xa= 5. 
Displacements of the surface of pole outside 12 may be found from the formula 
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For example, in the case of problem Bl we have 

The authors wish to express their appreciation to V.M. Aleksandrov for his interest in 
the present paper. 
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